THE RELATIONSHIP BETWEEN QUERCETIN AND HEALTH FROM THE PERSPECTIVE OF EPIGENETICS

Nguyễn Hoàng Nam1, Phạm Minh Trí1, Nguyễn Thị Minh Nguyệt1,
1 Bộ môn Dinh dưỡng và Khoa học thực phẩm, Viện Công nghệ sinh học và Thực phẩm, Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

Nội dung chính của bài viết

Tóm tắt

Background: Research on free radicals has been one of the topics that have attracted scientific and medical attention for decades, especially about ageing, disease, and infectious and non-infectious diseases. Exposure to free radicals from daily pollution and unhealthy lifestyles accelerates bodily damage and aging. These factors are primary contributors to gene and chromatin dysregulation, leading to chronic diseases such as metabolic disorders, allergies, cancer, etc.


Scope and approach: In the present literature, quercetin has been shown to have the ability to neutralize free radicals, reduce the formation of inflammatory cytokines, induce histamine release, and induce cell damage. At the same time, they have been shown to inhibit the growth of some inflammatory bacteria in the body, reversing the epigenetic mechanism of the disease. Moreover, quercetin has also been shown to have the ability to improve the body's immune system, help the body stay healthy, and overwhelm health hazards from the external environment. These roles of quercetin in health are reviewed from the latest advances in epigenetics.


Key findings and conclusions: Quercetin plays an important role in the treatment of human diseases through epigenetic mechanisms. Quercetin's potential to reverse the epigenetic mechanism for pathology requires further investigation to obtain a general view.

Chi tiết bài viết

Tài liệu tham khảo

1. Nega M. Role of Endogenous and Exogenous Glutathione in the Detoxification of Free Radicals. Research & Reviews: A Journal of Toxicology. 2017;7(1):1- 14.
2. Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. International journal of molecular sciences. 2022;23(3). doi:10.3390/ijms23031255.
3. Li L, Wang H, Chen X, Li X, Wang G, Jie Z, et al. Oxidative Stress-Induced Hypermethylation of KLF5 Promoter Mediated by DNMT3B Impairs Osteogenesis by Diminishing the Interaction with β-Catenin. Antioxid Redox Signal. 2021;35(1):1-20. doi:10.1089/ars.2020.8200.
4. Cuevas A, Saavedra N, Salazar LA, Abdalla DS. Modulation of immune function by polyphenols: possible contribution of epigenetic factors. Nutrients. 2013;5(7):2314-2332. doi:10.3390/nu5072314.
5. Do T, Anh, Hoang L, Shihavong K, Uy N, quang huy N. In vitro Antibacterial Activity of Quercetin Containing Extract from Hibiscus Sabdariffa L. Calyxes. VNU Journal of Science: Natural Sciences and Technology. 2016;32(1S):147-152.
6. Nguyen KNH, Nguyen N-VT, Kim KH. Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia. 2021; 68(2): 501-509. doi: 10.3897/pharmacia.68.e66044.
7. Chac L, Thinh B, Huong H, Kiet N, Huan L. Quantification of quercetin, isorhamnetin and ferulic acid in dry extract of Anoectochilus setaceus Blume from Vietnam. International Journal of Botany Studies. 2019;4(5):14-18.
8. Nguyen D, Herent M-F, Le T-B, Hue B, Hang B, Thi-Thanh-Huong D, et al. Isolation of Quercetin-3-O-sulfate and quantification of major compounds from Psidium guajava L. from Vietnam. Journal of Food Composition and Analysis. 2022;115:104928. doi:10.1016/j.jfca.2022.104928.
9. Su Z-Y, Lai B-A, Lin Z-H, Wei G-J, Huang S-H, Tung Y-C, et al. Water extract of lotus leaves has hepatoprotective activity by enhancing Nrf2- and epigenetics-mediated cellular antioxidant capacity in mouse hepatocytes. Journal of Functional Foods. 2022;99:105331. doi:10.1016/j.jff.2022.105331.
10. Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, et al. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018;114:52-60.
11. Carson C, Lawson HA. Epigenetics of metabolic syndrome. Physiological genomics. 2018;50(11):947-955.
12. Aguilar-Zarate P, Aguirre Joya JA, Govea Salas M, Rodriguez R. Nutrigenetics and nutrigenomics: a general review. 2014. p. 383-401.
13. Dabeek WM, Marra MV. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients. 2019;11(10). doi:10.3390/nu11102288.
14. Nile A, Nile SH, Shin J, Park G, Oh JW. Quercetin-3-Glucoside Extracted from Apple Pomace Induces Cell Cycle Arrest and Apoptosis by Increasing Intracellular ROS Levels. International journal of molecular sciences. 2021;22(19). doi:10.3390/ijms221910749.
15. Larson A, Symons J, Jalili T. Therapeutic Potential of Quercetin to Decrease Blood Pressure: Review of Efficacy and Mechanisms. Advances in nutrition (Bethesda, Md). 2012;3:39-46.
16. Sezer ED, Oktay LM, Karadadaş E, Memmedov H, Selvi Gunel N, Sözmen E. Assessing Anticancer Potential of Blueberry Flavonoids, Quercetin, Kaempferol, and Gentisic Acid, Through Oxidative Stress and Apoptosis Parameters on HCT-116 Cells. Journal of medicinal food. 2019;22(11):1118-26. doi:10.1089/jmf.2019.0098.
17. Haytowitz. DB, Wu. X, Bhagwat. S. USDA Database for the Flavonoid Content of Selected Foods (Release 3.3): U.S. Department of Agriculture. [Online]. 2018. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/flavonoids/.
18. Yasin G, Jasim S, Mahmudiono T, Al-Shawi S, Shichiyakh R, Shoukat S, et al. Investigating the effect of garlic (Allium sativum) essential oil on foodborne pathogenic microorganisms. Food Science and Technology. 2022;42. doi:10.1590/fst.03822.
19. Yang J, Chen X, Rao S, Li Y, Zang Y, Zhu B. Identification and Quantification of Flavonoids in Okra (Abelmoschus esculentus L. Moench) and Antiproliferative Activity In Vitro of Four Main Components Identified. Metabolites. 2022;12(6). doi:10.3390/metabo12060483.
20. Hwang IK, Lee CH, Yoo KY, Choi JH, Park OK, Lim SS, et al. Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. Journal of medicinal food. 2009;12(5):990-5. doi:10.1089/jmf.2008.1400.
21. Verma RJ, Sangai NP. The ameliorative effect of black tea extract and quercetin on bisphenol A-induced cytotoxicity. Acta poloniae pharmaceutica. 2009;66(1):41-4.
22. Soleas GJ, Grass L, Josephy PD, Goldberg DM, Diamandis EP. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clinical Biochemistry. 2002;35(2):119-24. doi:10.1016/S0009-9120(02)00275-8.
23. 정창호, 정희록, 최성길 and 허호진. Antioxidant and neuronal cell protective effects of aqueous extracts from lotus leaf tea. 농업생명과학연구. 2012;46(2):115-127.
24. Naeem mm. Health Benefits of Pomegranate (Peel & Juice) and Preparation of Functional Pomegranate Drink Using Probiotic Lactobacillus Plantarum. J Food Technology Research Journal. 2023;1(2):77-91.
25. Betanzos-Cabrera G, Montes-Rubio PY, Fabela-Illescas HE, Belefant-Miller H, Cancino-Diaz JC. Antibacterial activity of fresh pomegranate juice against clinical strains of Staphylococcus epidermidis. Food & nutrition research. 2015;59:27620. doi:10.3402/fnr.v59.27620.
26. Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldívar SO. Phenolic Composition, Antioxidant Capacity and In Vitro Cancer Cell Cytotoxicity of Nine Prickly Pear (Opuntia spp.) Juices. Plant Foods for Human Nutrition. 2009;64(2):146-152.
27. Sambandam B, Devasena T, Arivarasan A, Raman P. Extraction and isolation of flavonoid quercetin from the leaves of Trigonella foenum-graecum and their anti-oxidant activity. International Journal of Pharmacy and Pharmaceutical Sciences. 2016;8:120-124.
28. Weth FR, Hoggarth GB, Weth AF, Paterson E, White MPJ, Tan ST, et al. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. British Journal of Cancer. 2024;130(5):703-715.
29. Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS omega. 2020;5(20):11849-11872. doi:10.1021/acsomega.0c01818.
30. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, et al. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology. 2020;159(1):335-49.e15. doi:10.1053/j.gastro.2020.02.068.
31. Syn G, Blackwell JM, Jamieson SE. Chapter 19 - Epigenetics in Infectious Diseases. In: García-Giménez JL, editor. Epigenetic Biomarkers and Diagnostics. Boston: Academic Press; 2016. p. 377-400.
32. Stanland LJ, Luftig MA. The Role of EBV-Induced Hypermethylation in Gastric Cancer Tumorigenesis. Viruses. 2020;12(11). doi:10.3390/v12111222.
33. Zhang BG, Hu L, Zang MD, Wang HX, Zhao W, Li JF, et al. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development. Oncotarget. 2016;7(9):9788-9800. doi:10.18632/oncotarget.7125.
34. Ferro A, Morais S, Pelucchi C, Aragonés N, Kogevinas M, López-Carrillo L, et al. Smoking and Helicobacter pylori infection: an individual participant pooled analysis (Stomach Cancer Pooling- StoP Project). European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). 2019;28(5):390-396. doi:10.1097/cej.0000000000000471.
35. Camargo MC, Koriyama C, Matsuo K, Kim WH, Herrera-Goepfert R, Liao LM, et al. Case-case comparison of smoking and alcohol risk associations with Epstein-Barr virus-positive gastric cancer. International journal of cancer. 2014;134(4):948-953. doi:10.1002/ijc.28402.
36. Liu Y, Li Y, Jiang Y, Zheng X, Wang T, Li J, et al. Quercetin Promotes Apoptosis of Gastric Cancer Cells through the EGFR-ERK Signaling Pathway. Journal of Food Biochemistry. 2024;2024(1):9945178. doi:10.1155/2024/9945178.
37. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers. 2021;13(17). doi:10.3390/cancers13174287.
38. Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, et al. Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. BioMed research international. 2022;2022:9605439. doi:10.1155/2022/9605439.
39. Lukong KE. Understanding breast cancer - The long and winding road. BBA clinical. 2017;7:64-77. doi:10.1016/j.bbacli.2017.01.001.
40. Le Huyen Ai T, Lao Duc T, Truong Kim P. DNA Hypermethylation in Breast Cancer. In: Phuc Van P, editor. Breast cancer (Tokyo, Japan). Rijeka: IntechOpen; 2017. p. Ch. 7.
41. Chen SH, Huang WT, Kao WC, Hsiao SY, Pan HY, Fang CW, et al. O6-methylguanine-DNA methyltransferase modulates cisplatin-induced DNA double-strand breaks by targeting the homologous recombination pathway in nasopharyngeal carcinoma. Journal of biomedical science. 2021;28(1):2. doi:10.1186/s12929-020-00699-y.
42. Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, et al. Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA Journal. 2018;9(4):403-419. doi:10.1007/s13167-018-0154-6.
43. Pirouzpanah S, Taleban FA, Mehdipour P, Atri M. Association of folate and other one-carbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. Journal of molecular medicine (Berlin, Germany). 2015;93(8):917-934. doi:10.1007/s00109-015-1268-0.
44. Kundur S, Prayag A, Selvakumar P, Nguyen H, McKee L, Cruz C, et al. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J Cell Physiol. 2019;234(7):11103-11118. doi:10.1002/jcp.27761.
45. Nguyen L, Lee Y-H, Sharma A, Park J, Jagga S, Sharma G, et al. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean Journal of Physiology and Pharmacology. 2017;21:205-213. doi:10.4196/kjpp.2017.21.2.205.
46. Luo T, Liang Y, Chen L, Sun H, Chen Q. Effect of quercetin on the progression of breast cancer in mice with chronic stress by regulating the polarization of microglia. Journal of Functional Foods. 2024; 119:106294. doi:10.1016/j.jff.2024.106294.
47. Prieto-Vila M, Shimomura I, Kogure A, Usuba W, Takahashi RU, Ochiya T, et al. Quercetin Inhibits Lef1 and Resensitizes Docetaxel-Resistant Breast Cancer Cells. Molecules (Basel, Switzerland). 2020;25(11). doi:10.3390/molecules25112576.
48. Dammann RH, Richter AM, Jiménez AP, Woods M, Küster M, Witharana C. Impact of Natural Compounds on DNA Methylation Levels of the Tumor Suppressor Gene RASSF1A in Cancer. International journal of molecular sciences. 2017;18(10). doi:10.3390/ijms18102160.
49. Saloni, Goel H, Rawat K, Syeda S, Shrivastava A, Jha A. Demethylation of RASSF1A Gene by Quercetin and Eugenol in HeLa Cancer Cell Line. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2019:29.
50. Shang Z, Kouznetsova VL, Tsigelny IFJJoI. Human Papillomavirus (HPV) Viral Proteins Substitute for the Impact of Somatic Mutations by Affecting Cancer-Related Genes: Meta-analysis and Perspectives. 2020. doi: 10.29245/2689-9981/2020/1.1157.
51. Yuan CH, Filippova M, Tungteakkhun SS, Duerksen-Hughes PJ, Krstenansky JL. Small molecule inhibitors of the HPV16-E6 interaction with caspase 8. Bioorganic & medicinal chemistry letters. 2012;22(5):2125-2129. doi:10.1016/j.bmcl.2011.12.145.
52. Murata M, Komatsu S, Miyamoto E, Oka C, Lin I, Kumazoe M, et al. Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer. Bioscience of microbiota, food and health. 2023;42(1):87-93. doi:10.12938/bmfh.2022-056.
53. Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, et al. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci. 2022;9:1002710. doi:10.3389/fmolb.2022.1002710.
54. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice. 2022;183:109119. doi:10.1016/j.diabres.2021.109119.
55. Dhanya R, Arya AD, Nisha P, Jayamurthy P. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Frontiers in pharmacology. 2017;8:336. doi:10.3389/fphar.2017.00336.
56. Niu Y, Wang T, Liu S, Yuan H, Li H, Fu L. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKα2-dependent manner. Biochimica et biophysica acta Molecular basis of disease. 2017;1863(9):2372-2381. doi:10.1016/j.bbadis.2017.07.001.
57. Zhang L, Wang X, Chang L, Ren Y, Sui M, Fu Y, et al. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats. Renal failure. 2024;46(1):2327495. doi:10.1080/0886022x.2024.2327495.
58. Li Y, Wang L, zhang M, Huang K, Yao Z, Rao P, et al. Advanced glycation end products inhibit the osteogenic differentiation potential of adipose‐derived stem cells by modulating Wnt/β‐catenin signalling pathway via DNA methylation. Cell Proliferation. 2020;52(2):e12540. doi:10.1111/cpr.12834.
59. Zhang Z, Yang X, Song YQ, Tu J. Autophagy in Alzheimer's disease pathogenesis: Therapeutic potential and future perspectives. Ageing research reviews. 2021;72:101464. doi:10.1016/j.arr.2021.101464.
60. Pant R, Kabeer SW, Sharma S, Kumar V, Patra D, Pal D, et al. Pharmacological inhibition of DNMT1 restores macrophage autophagy and M2 polarization in Western diet-induced nonalcoholic fatty liver disease. J Biol Chem. 2023;299(6):104779. doi:10.1016/j.jbc.2023.104779.
61. Lei P, Hu Y, Gao P, Ding Q, Yan J, Zhao J, et al. Sulforaphane Ameliorates Hepatic Lipid Metabolism via Modulating Lipophagy In Vivo and In Vitro. Journal of agricultural and food chemistry. 2022;70(48):15126-15133. doi:10.1021/acs.jafc.2c06311.
62. Cao H, Jia Q, Yan L, Chen C, Xing S, Shen D. Quercetin Suppresses the Progression of Atherosclerosis by Regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Macrophage Foam Cells. International journal of molecular sciences. 2019;20(23). doi:10.3390/ijms20236093.
63. Chang DPS, Guan XL. Metabolic Versatility of Mycobacterium tuberculosis during Infection and Dormancy. Metabolites. 2021;11(2). doi:10.3390/metabo11020088.
64. Sengupta S, Nayak B, Meuli M, Sander P, Mishra S, Sonawane A. Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Frontiers in cellular and infection microbiology. 2021;11:676456. doi:10.3389/fcimb.2021.676456.
65. Shukla H, Kumar V, Singh AK, Rastogi S, Khan SR, Siddiqi MI, et al. Isocitrate lyase of Mycobacterium tuberculosis is inhibited by quercetin through binding at N-terminus. International journal of biological macromolecules. 2015;78:137-141. doi:10.1016/j.ijbiomac.2015.04.005.
66. Zhu X, Li D, Du Y, He W, Lu Y. DNA hypermethylation-mediated downregulation of antioxidant genes contributes to the early onset of cataracts in highly myopic eyes. Redox biology. 2018;19:179-189. doi:10.1016/j.redox.2018.08.012.
67. Francisco BM, Salvador M, Amparo N. Oxidative stress in myopia. Oxidative medicine and cellular longevity. 2015;2015:750637. doi:10.1155/2015/750637.
68. Pawlowska E, Szczepanska J, Koskela A, Kaarniranta K, Blasiak J. Dietary Polyphenols in Age-Related Macular Degeneration: Protection against Oxidative Stress and Beyond. Oxidative medicine and cellular longevity. 2019;2019:9682318. doi:10.1155/2019/9682318.
69. Davis CK, Vemuganti R. Antioxidant therapies in traumatic brain injury. Neurochemistry international. 2022;152:105255. doi:10.1016/j.neuint.2021.105255.
70. Chen X, Chen C, Fan S, Wu S, Yang F, Fang Z, et al. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation. 2018;15(1):116. doi:10.1186/s12974-018-1151-3.
71. Chen X, Wu S, Chen C, Xie B, Fang Z, Hu W, et al. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation. 2017;14(1):143. doi:10.1186/s12974-017-0917-3.
72. Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, et al. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. International journal of biological sciences. 2021;17(1):89-96. doi:10.7150/ijbs.52619.
73. Yang T, Kong B, Gu JW, Kuang YQ, Cheng L, Yang WT, et al. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cellular and molecular neurobiology. 2014;34(6):797-804. doi:10.1007/s10571-014-0070-9.
74. Kom HH, Nageshwar D, Srilatha K, Reddy K. Protective effect of quercetin on weight drop injury model-induced neuroinflammation alterations in brain of mice. Journal of Applied Pharmaceutical Science. 2019;9:96-103. doi:10.7324/JAPS.2019.90412.
75. Wang Y, Wang H. The emerging role of histone deacetylase 1 in allergic diseases. Frontiers in immunology. 2022;13:1027403. doi:10.3389/fimmu.2022.1027403.
76. Ke X, Chen Z, Wang X, Kang H, Hong S. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis. Autoimmunity. 2023;56(1):2189133. doi:10.1080/08916934.2023.2189133.
77. Bar-El Dadon S, Reifen R. Chapter 55 - Epigenetics in Food Allergies: The Missing Piece of the Puzzle. In: Caterina RDE, Martinez JA, Kohlmeier M, editors. Principles of Nutrigenetics and Nutrigenomics: Academic Press; 2020. p. 403-409.