EFFECTS OF SHADING CONDITIONS AND LEAF HARVEST TIMES ON TOTAL CONTENTS OF CHLOROPHYLL, POLYPHENOLS AND ANTIFUNGAL PROPERTIES IN RICE (Oryza sativa L.)

Thi To Uyen NGUYEN1,2,, Phu Tho NGUYEN3, Huu Thanh NGUYEN3, Chi Thien DANG, Thi Phuong Thao NGUYEN4
1 Dong Thap College of Medicine
2 Gradutate University of Science and Technology, Vietnam Academy of Science and Technology
3 An Giang University, Vietnam
4 Institute of Tropical Biology, Vietnam Academy of Science and Technology

Main Article Content

Abstract

Aims: To evaluate the effects of leaf harvest time and shadingconditions on the contents of chlorophyll and polyphenol, and the antifungal activity of rice leaf extract against Candida albicans.


Methods: The study used six rice varieties commonly grown in the Mekong Delta region including IR50404, Nang Thom, Tai Nguyen, Huong Lai, Nep Timand Huyet Rong. Rice leaves were harvested at six growth periods from weeks 1 to 6 and three shading conditions were applied (no shading, 1 layer of mesh, and 2 layers of mesh). Rice leaves were extracted with 80% ethanol. Analytical criteria includedthe contents of chlorophyll and polyphenol, chlorophyll a/b ratioand antifungal activities against Candida albicans.


Results: Shading and harvest time had a significant influence on the levels oftotal chlorophyll and polyphenols and antifungal properties in rice leaves. The results showed correlations between the contents of chlorophyll and polyphenol and antifungal activities. These values reachedthe highest when rice grown under unshaded condition and when the plants are 3-5 weeks old.


Conclusion: This is the basic premise for selecting rice varieties, suitable cultivation conditions to harvest rice leaves with high antifungal activities against Candida spp. and potential application in the production of skin care cosmetics.

Article Details

References

1. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences. 2014;1324(1):7-14. doi:10.1111/nyas.12540.
2. Thepthanee C, Liu CC, Yu HS, et al. Evaluation of phytochemical contents and in vitro antioxidant, anti-inflammatory, and anticancer activities of black rice leaf (Oryza sativa L.) extract and its fractions. Foods. 2021;10(12):2987. doi:10.3390/foods10122987.
3. Wangcharoen W, Phimphilai S. Chlorophyll and total phenolic contents, antioxidant activities and consumer acceptance test of processed grass drinks. J Food Sci Technol. 2016;53(12):4135-4140. doi:10.1007/s13197-016-2380-z.
4. Aalipour H, Nikbakht A, Sabzalian MR. Essential oil composition and total phenolic content in Cupressus arizonica G. in response to microbial inoculation under water stress conditions. Sci Rep. 2023;13(1):1209. doi:10.1038/s41598-023-28107-z.
5. Ferrante A, Mariani L. Agronomic management for enhancing plant tolerance to abiotic stresses: high and low values of temperature, light intensity, and relative humidity. Horticulturae. 2018;4(3):21. doi:10.3390/horticulturae4030021.
6. Wimalasekera R. Effect of light intensity on photosynthesis. In: Photosynthesis, Productivity and Environmental Stress. John Wiley & Sons, Ltd; 2019:65-73. doi:10.1002/9781119501800.ch4.
7. Ma Z, Li S, Zhang M, Jiang S, Xiao Y. Light intensity affects growth, photosynthetic capability, and total flavonoid accumulation of Anoectochilus plants. HortScience. 2010;45(6):863-867. doi:10.21273/HORTSCI.45.6.863.
8. Noertjahyani N, Akbar C, Komariah A, Mulyana H. Shade effect on growth, yield, and shade tolerance of three peanut cultivars. J Agro. 2020;7(1):102-111. doi:10.15575/6273.
9. Talapko J, Juzbašić M, Matijević T, et al. Candida albicans—the virulence factors and clinical manifestations of infection. Journal of Fungi. 2021;7(2):79. doi:10.3390/jof7020079
10. Morad HOJ, Wild AM, Wiehr S, et al. Pre-clinical imaging of invasive Candidiasis using immunopet/mr. Front Microbiol. 2018;9:1996. doi:10.3389/fmicb.2018.01996.
11. Jaiswal N, Kumar A. HPLC in the discovery of plant phenolics as antifungal molecules against Candida infection related biofilms. Microchemical Journal. 2022;179:107572. doi:10.1016/j.microc.2022.107572.
12. Ibrahim M, Riaz M, Ali A, et al. Evaluating the total phenolic, protein contents, antioxidant and pharmacological effects of extracts against and. Polish Journal of Chemical Technology. 2023;25(3):110-119. doi:10.2478/pjct-2023-0031.
13. Jeenkeawpieam J, Rodjan P, Roytrakul S, et al. Antifungal activity of protein hydrolysates from Thai Phatthalung Sangyod rice (Oryza sativa L.) seeds. Vet World. 2023;16(5):1018-1028. doi:10.14202/vetworld.2023.1018-1028
14. Al-Khafaji AN, Muhsin AH, Abdallab MT. Antifungal activity of crude and phenolic extract to rice crusts and chemical pesticide (Blitinute) in inhibition of fungi isolate from rice seeds. IJFMT. 2020;4(2):1427-1433. doi:10.37506/ijfmt.v14i2.3112.
15. Tamprasit K, Weerapreeyakul N, Sutthanut K, Thukhammee W, Wattanathorn J. Harvest age effect on phytochemical content of white and black glutinous rice cultivars. Molecules. 2019;24(24):4432. doi:10.3390/molecules24244432.
16. Berwal M, Haldhar S, Ram C, Shil S, Gora JS. Effect of extraction solvent on total phenolics, flavonoids and antioxidant capacity of flower bud and foliage of Calligonum polygonoides L. Indian Journal of Agricultural Biochemistry. 2021;34:61-67. doi:10.5958/0974-4479.2021.00008.3.
17. Roca M, Chen K, Pérez-Gálvez A. Chapter 8 - Chlorophylls. In: Schweiggert R, ed. Handbook on Natural Pigments in Food and Beverages (Second Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing; 2024:193-226. doi:10.1016/B978-0-323-99608-2.00017-3.
18. Yang CM, Lee YJ. Seasonal changes of chlorophyll content in field-grown rice crops and their relationships with growth. Proc Natl Sci Counc Repub China B. 2001;25(4):233-238.
19. Thi ND, Hwang ES. Bioactive compound contents and antioxidant activity in aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev Nutr Food Sci. 2014;19(3):204-212. doi:10.3746/pnf.2014.19.3.204.
20. Khanthapok P, Muangprom A, Sukrong S. Antioxidant activity and DNA protective properties of rice grass juices. ScienceAsia. 2015;41(2):119. .doi:10.2306/scienceasia1513-1874.2015.41.119.
21. Neugart S, Baldermann S, Hanschen FS, Klopsch R, Wiesner-Reinhold M, Schreiner M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Scientia Horticulturae. 2018;233:460-478. doi:10.1016/j.scienta.2017.12.038.
22. Resurreccion AP, Makino A, Bennett J, Mae T. Effect of light intensity on the growth and photosynthesis of rice under different sulfur concentrations. Soil Science and Plant Nutrition. 2002;48(1):71-77. doi:10.1080/00380768.2002.10409173.
23. Viji MM, Thangaraj M, Jayapragasam M. Effect of Low Light on Photosynthetic Pigments, Photochemical Efficiency and Hill Reaction in Rice (Oryza sativa L.). Journal of Agronomy and Crop Science. 1997;178(4):193-196. doi:10.1111/j.1439-037X.1997.tb00490.x.
24. Karimi E, Jaafar H, Ghasemzadeh A, Ibrahim MH. Light intensity effects on production and antioxidant activity of flavonoids and phenolic compounds in leaves, stems and roots of three varieties of Labisia pumila Benth. Australian Journal of Crop Science. Published online 2013. Accessed July 16, 2024. https://www.semanticscholar.org/paper/Light-intensity-effects-on-production-and-activity-Karimi-Jaafar/0ec2934a5178ec150b11c3fbce5baec80accdc00.
25. Katerova Z, Todorova D, Sergiev I. Plant secondary metabolites and some plant growth regulators elicited by UV irradiation, light and/or shade. In: Ghorbanpour M, Varma A, eds. Medicinal Plants and Environmental Challenges. Springer International Publishing; 2017:97-121. doi:10.1007/978-3-319-68717-9_6.
26. Ekawati R, Saputri LH. Chlorophyll Components, Total Flavonoid, Anthocyanin Content and Yield of Eleutherine palmifolia L. (Merr) on Different Shading Levels. IOP Conf Ser: Earth Environ Sci. 2022;1018(1):012004. doi:10.1088/1755-1315/1018/1/012004
27. Dong C, Fu Y, Liu G, Liu H. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Advances in Space Research. 2014;53(11):1557-1566. doi:10.1016/j.asr.2014.02.004
28. Ye JH, Lv YQ, Liu SR, et al. Effects of Light Intensity and Spectral Composition on the Transcriptome Profiles of Leaves in Shade Grown Tea Plants (Camellia sinensis L.) and Regulatory Network of Flavonoid Biosynthesis. Molecules. 2021;26(19):5836. doi:10.3390/molecules26195836.
29. Zhan X, Chen Z, Chen R, Shen C. Environmental and genetic factors involved in plant protection-associated secondary metabolite biosynthesis pathways. Front Plant Sci. 2022;13. doi:10.3389/fpls.2022.877304.
30. Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2012;1819(2):176-185. doi:10.1016/j.bbagrm.2011.08.010.
31. Pourakbar L, Moghaddam SS, Enshasy HAE, Sayyed RZ. Antifungal activity of the extract of a macroalgae, Gracilariopsis persica, against four plant pathogenic fungi. Plants. 2021;10(9):1781. doi:10.3390/plants10091781.
32. Millat M, Amin M. Phytochemical screening and antimicrobial potential analysis of methanolic extracts of ten days mature Triticum aestivum Linn. (whole plants). Discovery Phytomedicine. 2019;6:16-19. doi:10.15562/phytomedicine.2019.78.
33. Evensen NA, Braun PC. The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol. 2009;55(9):1033-1039. doi:10.1139/w09-058.
34. Maekawa L, Roberta L, Sidnei M, Maekawa M, Nassri M, Koga Ito C. Antimicrobial activity of chlorophyll-based solution on Candida albicans and Enterococcus faecalis. Revista Sul-brasiliera de Odontologia. 2007;4. doi:10.21726/rsbo.v4i2.1294.
35. Martins N, Barros L, Henriques M, Silva S, Ferreira ICFR. Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products. 2015;74:648-670. doi:10.1016/j.indcrop.2015.05.067.