DEVELOPMENT OF A METHOD FOR GENOTYPING THE 𝘔𝘛𝘏𝘍𝘙 RS1801133 POLYMORPHISM IN VIETNAMESE, USING THE POLYMERASE CHAIN REACTION WITH CONFRONTING TWO-PAIR PRIMERS

Quang Thuyen TRAN, Thi Thuy Nga BUI1, Anh Ngoc NGUYEN1, Quang Binh TRAN1,
1 National Institute of Nutrition, Viet Nam

Main Article Content

Abstract

Aims: To develop a method using polymerase chain reaction with confronting two-pair primers (PCR-CTPP) to genotype MTHFR rs1801133 polymorphism in Vietnamese people.


Methods: DNA samples from 15 Vietnamese people were used to evaluate this assay. The Sanger sequencing method was used to identify the standard genotypes of the rs1801133 polymorphism. Some bioinformatic softwares were used to design four a multiplex PCR-CTPP. Experimental procedures were conducted to verify the primers and components of the PCR method.


Results: The protocol of the PCR-CTPP was successful developed with optimal inner/outer primers ratio, the melting temperature of primers, the components and the thermal cycling to identify MTHFR rs1801133 polymorphism.


Conclusion: The PCR-CTPP protocol should be applied to genotyping MTHFR rs1801133 polymorphism in large cohorts to investigate the association between the polymorphism and metabolic syndrome in Vietnamese population.

Article Details

References

1. Alberti K. International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640-1645.
2. Huong NT, Thuoc ĐP, Chi LV. Epidemiological characteristics, risk factors of metabolic syndrome in the population of Thua Thien Hue Province. Journal of Vietnam Heart Association . 2021;(98):142-150. doi:10.58354/jvc.98.2021.109
3. Anh PTV, Cuong LĐ, Nhung NT. Some asociated factors with metabolic syndrome in people aged 25-64 years old in Thai Binh province. Journal of Community Medicine. 2023;64(1). doi:10.52163/yhc.v64i1.575
4. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111-113. doi:10.1038/ng0595-111
5. Real JT, Martinez-Hervas S, Garcia-Garcia AB, et al. Association of C677T Polymorphism in MTHFR Gene, High Homocysteine and Low HDL Cholesterol Plasma Values in Heterozygous Familial Hypercholesterolemia. Journal of Atherosclerosis and Thrombosis. 2009;16(6):815-820. doi:10.5551/jat.2196
6. Kaur H, Badaruddoza B, Bains V, Kaur A. Genetic association of ADIPOQ gene variants (-3971A>G and +276G>T) with obesity and metabolic syndrome in North Indian Punjabi population. PLOS ONE. 2018;13(9):e0204502. doi:10.1371/journal.pone.0204502
7. Jang Y, Lee JH, Kim OY, et al. The SNP276G>T polymorphism in the adiponectin (ACDC) gene is more strongly associated with insulin resistance and cardiovascular disease risk than SNP45T>G in nonobese/nondiabetic Korean men independent of abdominal adiposity and circulating plasma adiponectin. Metabolism. 2006;55(1):59-66. doi:10.1016/j.metabol.2005.07.007
8. Hoa TN, Nan TN, Hoa TMT, et al. Associationbetween methyl -methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism and osteoporosis in men in men. VMJ. 2022;514(2). doi:10.51298/vmj.v514i2.2634
9. Antonaros F, Olivucci G, Cicchini E, et al. MTHFR C677T polymorphism analysis: A simple, effective restriction enzyme-based method improving previous protocols. Molecular Genetics & Genomic Medicine. 2019;7(5):e628. doi:10.1002/mgg3.628
10. Hamajima N, Saito T, Matsuo K, Kozaki K, Takahashi T, Tajima K. Polymerase Chain Reaction with Confronting Two‐pair Primers for Polymorphism Genotyping. Jpn J Cancer Res. 2000;91(9):865-868. doi:10.1111/j.1349-7006.2000.tb01026.x
11. Little S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet. 2001;Chapter 9:Unit 9.8. doi:10.1002/0471142905.hg0908s07
12. Srejovic I, Jakovljevic V, Zivkovic V, Djuric D. Possible Role of N-Methyl-D-Aspartate Receptors in Physiology and Pathophysiology of Cardiovascular System. Serbian Journal of Experimental and Clinical Research. 2019;20(1):3-13. doi:10.1515/sjecr-2017-0010
13. Platt DE, Hariri E, Salameh P, et al. Type II diabetes mellitus and hyperhomocysteinemia: a complex interaction. Diabetology & Metabolic Syndrome. 2017;9(1):19. doi:10.1186/s13098-017-0218-0.
14. Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M. Hyperhomocysteinemia as a Risk Factor and Potential Nutraceutical Target for Certain Pathologies. Frontiers in Nutrition. 2019;6. https://www.frontiersin.org/article/10.3389/fnut.2019.00049.
15. Hamajima N, Saito T, Matsuo K, Tajima K. Competitive Amplification and Unspecific Amplification in Polymerase Chain Reaction with Confronting Two-Pair Primers. The Journal of Molecular Diagnostics. 2002;4(2):103-107. doi:10.1016/S1525-1578(10)60688-5