THE EFFECTS OF ADVANCED GLYCATION END (AGE) AND ACRYLAMIDE COMPOUNDS, AND FAST FOOD CONSUMPTION HABITS ON HEALTH

Nguyễn Hoàng Nam1, Lê Ngọc Vân1, Nguyễn Thị Minh Nguyệt1,
1 Bộ môn Dinh dưỡng và Khoa học thực phẩm, Viện Công nghệ sinh học &Thực phẩm, Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

Nội dung chính của bài viết

Tóm tắt

Đặt vấn đề: An toàn thực phẩm đã trở thành một lĩnh vực được quan tâm hàng đầu trong nhiều thập kỷ qua, đặc biệt kể từ khi các thống kê xã hội học cho thấy có mối liên hệ tuyến tính giữa việc gia tăng mắc các bệnh mạn tính với trình độ công nghiệp hóa, trong đó gắn liền với ô nhiễm môi trường và quy mô của thực phẩm chế biến công nghiệp. Nhiều nghiên cứu đã chỉ ra sự hình thành các hợp chất gây ô nhiễm và gây hại đến sức khỏe (acrylamide, AGEs) có trong thực phẩm chế biến ở nhiệt độ cao hết hợp với lối sống không lành mạnh như tiêu thụ sản phẩm nhiều đường và thực phẩm có cồn, làm tăng nguy cơ bệnh tật như đái tháo đường, béo phì, gan nhiễm mỡ, xơ gan và thậm chí cả bệnh ung thư. 


Phạm vi và cách tiếp cận: Bài báo này tóm tắt các khía cạnh hình thành acrylamide và AGEs; đối tượng nghiên cứu acrylamide và AGEs hình thành trong quá trình chế biến và bảo quản thực phẩm đã được người tiêu dùng, cơ quan y tế, cơ quan quản lý an toàn thực phẩm và ngành công nghiệp thực phẩm quan tâm. Các chất phytochemical có nguồn gốc từ các loài thực vật khác nhau có khả năng ức chế sự hình thành AGEs nội sinh, góp phần bảo vệ sức khỏe. 


Các phát hiện và kết luận chính: Nghiên cứu về acrylamide và AGEs có ý nghĩa quan trọng đối với lĩnh vực chế biến thực phẩm và sức khỏe con người. Hiểu được vai trò của các hợp chất có hoạt tính sinh học, hành vi lối sống, phương pháp chế biến thực phẩm và cơ chế biểu sinh đối với acrylamide và AGEs giúp chúng ta hiểu rõ hơn về cách bảo vệ sức khỏe trong tương lai. 

Chi tiết bài viết

Tài liệu tham khảo

1. Lin J-A, Wu C-H, Yen G-C. Perspective of Advanced Glycation End Products on Human Health. Journal of Agricultural and Food Chemistry. 2018;66(9):2065-2070. doi:10.1021/acs.jafc.7b05943
2. Parker JK, Balagiannis DP, Higley J, Smith G, Wedzicha BL, Mottram DS. Kinetic Model for the Formation of Acrylamide during the Finish-Frying of Commercial French Fries. Journal of Agricultural and Food Chemistry. 2012;60(36):9321-9331. doi:10.1021/jf302415n
3. Rifai L, Saleh FA. A Review on Acrylamide in Food: Occurrence, Toxicity, and Mitigation Strategies. International Journal of Toxicology. 2020;39(2):93-102. doi:10.1177/1091581820902405
4. Maan AA, Anjum MA, Khan MKI, et al. Acrylamide Formation and Different Mitigation Strategies during Food Processing – A Review. Food Reviews International. 2022;38(1):70-87. doi:10.1080/87559129.2020.1719505
5. Semchyshyn HM, Lushchak VI. Interplay between oxidative and carbonyl stresses: molecular mechanisms, biological effects and therapeutic strategies of protection. Oxidative Stress—Molecular Mechanisms and Biological Effects. 2012;25:15-46. doi:10.5772/35949
6. Colin G H, Lisa A. The chemistry, formation and occurrence of 3-aminopropionamide (3-APA) in foods: a review prepared for the UK Food Standards Agency. Premier analytical services. 2014:1-21.
7. Gertz C, Klostermann S, Parkash Kochhar S. Deep frying: the role of water from food being fried and acrylamide formation. OCL. 2003;10(4):297-303. doi:10.1051/ocl.2003.0297
8. Kaewmool C, Kongtawelert P, Phitak T, Pothacharoen P, Udomruk S. Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. J Neuroimmunol. 2020;341:577164. doi:10.1016/j.jneuroim.2020.577164
9. Zhao M, Zhang B, Deng L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front Nutr. 2022;9:859189. doi:10.3389/fnut.2022.859189
10. Watzek N, Böhm N, Feld J, et al. N7-Glycidamide-Guanine DNA Adduct Formation by Orally Ingested Acrylamide in Rats: A Dose–Response Study Encompassing Human Diet-Related Exposure Levels. Chemical Research in Toxicology. 2012;25(2):381-390. doi:10.1021/tx200446z
11. Hölzl-Armstrong L, Kucab JE, Moody S, et al. Mutagenicity of acrylamide and glycidamide in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Archives of Toxicology. 2020;94(12):4173-4196. doi:10.1007/s00204-020-02878-0
12. Catherine S. Deep nutrition – Dinh dưỡng chuyên sâu. Nhà xuất bản Thế Giới; 2021.
13. Semchyshyn HM. Fructation In Vivo: Detrimental and Protective Effects of Fructose. BioMed Research International. 2013;2013:343914. doi:10.1155/2013/343914
14. Vasdev S, Gill V, Singal P. Role of Advanced Glycation End Products in Hypertension and Atherosclerosis: Therapeutic Implications. Cell Biochemistry and Biophysics. 2007;49(1):48-63. doi:10.1007/s12013-007-0039-0
15. Santos JCdF, Valentim IB, De Araújo ORP, Ataide TDR, Goulart MOF. Development of Nonalcoholic Hepatopathy: Contributions of Oxidative Stress and Advanced Glycation End Products. International Journal of Molecular Sciences. 2013;14(10)doi:10.3390/ijms141019846
16. Leal YA. Chapter 1 - Cancer epidemiology. In: Campos MRS, Ortega AMM, eds. Oncological Functional Nutrition. Academic Press; 2021:1-40.
17. Friedman M. Chemistry, Biochemistry, and Safety of Acrylamide. A Review. Journal of Agricultural and Food Chemistry. 2003;51(16):4504-4526. doi:10.1021/jf030204+
18. Youssef M, Abou-Gharbia H, Aboubakr H. ACRYLAMIDE IN FOOD : AN OVERVIEW. Alexandria Journal of Food Science and Technology. 01/01 2004;1:1-22.
19. Çatak J. Quantitative analyses of glyoxal and methylglyoxal compounds in frenchfry samples by HPLC Using 4-Nitro-1, 2-Phenlenediamine as a derivatizing reagent. International Journal of Innovative Research and Reviews. 2020;4(1):20-24.
20. Takeuchi M, Takino J-i, Furuno S, et al. Assessment of the Concentrations of Various Advanced Glycation End-Products in Beverages and Foods That Are Commonly Consumed in Japan. Plos one. 2015;10(3):e0118652. doi:10.1371/journal.pone.0118652
21. Nagai R, Shirakawa J-i, Fujiwara Y, et al. Detection of AGEs as markers for carbohydrate metabolism and protein denaturation. Journal of Clinical Biochemistry and Nutrition. 2014;55(1):1-6. doi:10.3164/jcbn.13-112
22. Younessi P, Yoonessi A. Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress. Iranian journal of medical sciences. 2011;36:154-66.
23. Alzheimer’s association report. 2021 Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2021;17(3):327-406. doi:10.1002/alz.12328
24. Kompella P, Vasquez KM. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Molecular Carcinogenesis. 2019;58(9):1531-1550. doi:10.1002/mc.23048
25. Feng Z, Hu W, Tang MS. Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America. Jun 8 2004;101(23):8598-602. doi:10.1073/pnas.0402794101
26. Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox biology. 2015;4:193-9. doi:10.1016/j.redox.2014.12.011
27. Clayton P. Let your food be your pharmaco- nutrition, the new road to health, healing and happiness. Paul Clayton Education Publisher 2021: 1-98.
28. Mahmoudinezhad M, Abbasalizad Farhangi M, Kahroba H, Dehghan P. Personalized diet study of dietary advanced glycation end products (AGEs) and fatty acid desaturase 2 (FADS2) genotypes in obesity. Scientific Reports. 2021;11(1):19725. doi:10.1038/s41598-021-99077-3
29. Shaw J, Sicree RA, Zimmet PZ. Global Estimates of the Prevalence of Diabetes for 2010 and 2030. Diabetes research and clinical practice. 11/01 2009;87:4-14. doi:10.1016/j.diabres.2009.10.007
30. Nguyen TT, Trevisan M. Vietnam a country in transition: health challenges. BMJ nutrition, prevention & health. 2020;3(1):60-66. doi:10.1136/bmjnph-2020-000069
31. Odegaard AO, Koh W-P, Arakawa K, Yu MC, Pereira MA. Soft Drink and Juice Consumption and Risk of Physician-diagnosed Incident Type 2 Diabetes: The Singapore Chinese Health Study. American Journal of Epidemiology. 2010;171(6):701-708. doi:10.1093/aje/kwp452
32. Samanta S. Glycated hemoglobin and subsequent risk of microvascular and macrovascular complications. Indian Journal of Medical Sciences. 2021;73 doi:10.25259/IJMS_16_2020
33. Pinto RS, Minanni CA, de Araújo Lira AL, Passarelli M. Advanced Glycation End Products: A Sweet Flavor That Embitters Cardiovascular Disease. International journal of molecular sciences. 2022;23(5):2404. doi:10.3390/ijms23052404
34. Takeuchi M, Sakasai-Sakai A, Takino J, Takata T, Ueda T, Tsutsumi M. Toxic AGEs (TAGE) theory in the pathogenesis of NAFLD and ALD. Int J Diabetes Clin Res. 2015;2(4)doi:10.23937/2377-3634/1410036
35. Agh F, Shidfar F. Chapter 18 - The Effects of Dietary Advanced Glycation End Products (AGEs) on Liver Disorders. In: Watson RR, Preedy VR, eds. Dietary Interventions in Liver Disease. Academic Press; 2019:213-231.
36. Cheon SY, Song J. Novel insights into non-alcoholic fatty liver disease and dementia: insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and inflammation. Cell & Bioscience. 2022;12(1):99. doi:10.1186/s13578-022-00836-0
37. Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. Jun 10 1997;94(12):6474-9. doi:10.1073/pnas.94.12.6474
38. D'Cunha NM, Sergi D, Lane MM, et al. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients. 2022;14(12)doi:10.3390/nu14122421
39. Li Y, Wang L, zhang M, et al. Advanced glycation end products inhibit the osteogenic differentiation potential of adipose‐derived stem cells by modulating Wnt/β‐catenin signalling pathway via DNA methylation. Cell Proliferation. 2020;52(2):e12540. doi:10.1111/cpr.12834
40. Chen D, Gong Y, Xu L, Zhou M, Li J, Song J. Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs. Cell Prolif. 2018;52(2):e12540. doi:10.1111/cpr.12540
41. del Castillo MD, Iriondo-DeHond A, Iriondo-DeHond M, et al. Healthy eating recommendations: good for reducing dietary contribution to the body’s advanced glycation/lipoxidation end products pool? Nutrition Research Reviews. 2021;34(1):48-63. doi:10.1017/S0954422420000141
42. Oz AT, Kafkas E. Phytochemicals in fruits and vegetables. Waisundara V Superfood and functional food London: IntechOpen. 2017:p175-184.
43. Rebollo-Hernanz M, Fernández-Gómez B, Herrero M, et al. Inhibition of the Maillard reaction by phytochemicals composing an aqueous coffee silverskin extract via a mixed mechanism of action. Foods. 2019;8(10):438.
44. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules. 2017;22(3)doi:10.3390/molecules22030358
45. Valavanidis A, Vlachogianni T. Chapter 8 - Plant Polyphenols: Recent Advances in Epidemiological Research and Other Studies on Cancer Prevention. In: Atta ur R, ed. Studies in Natural Products Chemistry. Elsevier; 2013:269-295.
46. Salehi B, Sharopov F, Fokou PV, et al. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells. 2019;8(7)doi:10.3390/cells8070681
47. Velichkova S, Foubert K, Pieters L. Natural Products as a Source of Inspiration for Novel Inhibitors of Advanced Glycation Endproducts (AGEs) Formation. Planta Med. 02.08.2021 2021;87(10/11):780-801. doi:10.1055/a-1527-7611
48. Storz MA. Lifestyle adjustments in long-COVID management: Potential benefits of plant-based diets. Current Nutrition Reports. 2021:1-12.
49. Harris J, Nguyen PH, Tran LM, Huynh PN. Nutrition transition in Vietnam: changing food supply, food prices, household expenditure, diet and nutrition outcomes. Food Security. 2020;12(5):1141-1155. doi:10.1007/s12571-020-01096-x
50. Butnariu M, Butu A. Chemical Composition of Vegetables and Their Products. Handbook of food chemistry; 2015.
51. Tao W. The lost nutrition studies: Away from disease do Lương Ngân dịch. Nhà xuất bản Dân Trí, Huy Hoàng Co. 2021: 456p.
52. Emoto M. The hidden messages in water. Beyond Words Publishing, Hillsboro 2004: 100-150.
53. Yin R, Kuo H-C, Hudlikar R, et al. Gut Microbiota, Dietary Phytochemicals, and Benefits to Human Health. Current Pharmacology Reports. 2019;5(5):332-344. doi:10.1007/s40495-019-00196-3
54. Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long‑chain acyl‑CoA synthetases (Review). Oncol Lett. 2018;16(2):1390-1396. doi:10.3892/ol.2018.8843
55. Hagihara Y, Yoshimatsu Y, Mikami Y, Takada Y, Mizuno S, Kanai T. Epigenetic regulation of T helper cells and intestinal pathogenicity. Seminars in Immunopathology. 2019;41(3):379-399. doi:10.1007/s00281-019-00732-9.