GIẢI NOBEL SINH LÝ HỌC HOẶC Y HỌC 2025: TIẾP CẬN DINH DƯỠNG TRONG Y HỌC DỰ PHÒNG

Phạm Đức Minh1, , Trần Quang Bình2
1 Bệnh viện Quân Y 103
2 Viện Dinh dưỡng, Hà Nội

Nội dung chính của bài viết

Tóm tắt

Giải Nobel Sinh lý học hoặc Y học 2025 tôn vinh phát hiện về tế bào T điều hòa (Treg) và yếu tố FOXP3 – nền tảng của cơ chế dung nạp miễn dịch ngoại biên, định hình tư duy mới trong y học dự phòng. Phát hiện này nhấn mạnh: sức khỏe bền vững không chỉ đến từ tăng cường miễn dịch, mà từ sự cân bằng của hệ miễn dịch – một nguyên lý đã được phản ánh trong triết lý dưỡng sinh phương Đông. Các bằng chứng sinh học cho thấy dinh dưỡng không chỉ là nguồn năng lượng mà còn là “tín hiệu thứ tư” trong hệ miễn dịch, tham gia điều hòa biểu hiện gen, chuyển hóa tế bào và cân bằng viêm.

Bài viết cũng nhấn mạnh hướng phát triển dinh dưỡng miễn dịch (immunonutrition) như một liệu pháp hỗ trợ mới, đặc biệt trong các bệnh tự miễn, viêm mạn tính và ung thư. Đối với Việt Nam, cần đẩy mạnh nghiên cứu bản địa hóa, xây dựng hướng dẫn “dinh dưỡng miễn dịch cộng đồng” và tăng cường giáo dục dinh dưỡng phòng bệnh trong chương trình sức khỏe quốc gia. Dinh dưỡng, với vai trò như tín hiệu thiết yếu trong hệ miễn dịch, được xem là nền tảng mới cho y học dự phòng và điều trị cá thể hóa trong thập niên tới.

Chi tiết bài viết

Tài liệu tham khảo

1. The Nobel Prize. The Nobel Prize in Physiology or Medicine 2025: Press Release. 2025, Nobel Prize Outreach AB: Stockholm.
2. Dhawan M, Rabaan AA, Alwarthan S, et al. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines (Basel). 2023; 11(3): 699. doi:10.3390/vaccines11030699.
3. Sakaguchi S. The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J Clin Invest. 2003;112(9): 1310-1312. doi: 10.1172/JCI20274.
4. Matos TR, Hirakawa M, Alho AC, et al. Maturation and Phenotypic Heterogeneity of Human CD4+ Regulatory T Cells From Birth to Adulthood and After Allogeneic Stem Cell Transplantation. Front Immunol. 2020. 11:570550. doi: 10.3389/fimmu.2020.570550.
5. Hori S, Nomura T, and Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003. 299(5609): 1057-1061. doi: 10.1126/science.1079490.
6. Sakaguchi S, Wing K, and Miyara M. Regulatory T cells - a brief history and perspective. Eur J Immunol. 2007; 37(S1): S116-23. doi:10.1002/eji.200737593.
7. Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001; 27(1):18-20. doi: 10.1038/83707.
8. Bailey-Bucktrout SL and Bluestone JA. Regulatory T cells: stability revisited. Trends Immunol. 2011; 32(7): 301-316. doi: 10.1016/j.it.2011.04.002.
9. The Nobel Prize. The Nobel Prize in Physiology or Medicine 2024: Press Release. 2024, Nobel Prize Outreach AB: Stockholm.
10. DeLucas M, Sánchez J, Palou A, Serra F. The Impact of Diet on miRNA Regulation and Its Implications for Health: A Systematic Review. Nutrients. 2024;16(6):770. doi: 10.3390/nu16060770.
11. The Nobel Prize. The Nobel Prize in Physiology or Medicine 2021: Press Release. 2021, Nobel Prize Outreach AB: Stockholm.
12. Yang, B., et al., Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med, 2024. 26: p. e10.
13. The Nobel Prize. The Nobel Prize in Physiology or Medicine 2019: Press Release. 2019, Nobel Prize Outreach AB: Stockholm.
14. Nobel Prize O. The Nobel Prize in Physiology or Medicine 2018: Press Release. 2018, Nobel Prize Outreach AB: Stockholm.
15. Spencer CN, McQuade JL, Gopalakrishnan V, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 2021; 374(6575):1632-1640.doi: 10.1126/science.aaz7015.
16. The Nobel Prize. Discoveries of Mechanisms for Autophagy: Scientific Background 2016. 2016, Nobel Prize Outreach AB: Stockholm.
17. Chi H. Immunometabolism at the intersection of metabolic signaling, cell fate, and systems immunology. Cell Mol Immunol. 2022; 19(3): 299-302. doi:10.1038/s41423-022-00840-x.
18. Raynor JL and Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med. 2024. 221(3). doi: 10.1084/jem.20221839.
19. O'Neill LA, Kishton RJ, and Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016. 16(9): 553-565. doi: 10.1038/nri.2016.70.
20. Chen S, Ou Y, Zhao L, et al. Differential Effects of Lactobacillus casei Strain Shirota on Patients With Constipation Regarding Stool Consistency in China. J Neurogastroenterol Motil. 2019; 25(1): 148-158. doi: 10.5056/jnm17085.
21. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480): 446-450. doi: 10.1038/nature12721.
22. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013; 341(6145): 569-573. doi: 10.1126/science.1241165.
23. Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 2008; 181(4):2277-2284. doi: 10.4049/jimmunol.181.4.2277.
24. Mahon BD. Vitamin D promotes regulatory T cell activity. Immunology. 2010;
25. Maywald M, Wang F, and Rink L. The Intracellular Free Zinc Level Is Vital for Treg Function and a Feasible Tool to Discriminate between Treg and Activated Th Cells. Int J Mol Sci. 2018; 19(11): 3575. doi: 10.3390/ijms19113575.
26. Alrashidi HE and Alotiby AA. Zinc Modulates the Priming of T Helper 1, T Helper 17, and T Regulatory Cells in Allogeneic and Autologous in vitro Models. J Inflamm Res. 2022; 15:6931-6939. doi: 10.2147/JIR.S391407.
27. Hu Y, Feng W, Chen H, et al. Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto's thyroiditis: A prospective randomized-controlled trial. Clin Transl Sci. 2021; 14(4): 1390-1402. doi: 10.1111/cts.12993.
28. Xue H, Wang W, Li Y, et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr J. 2010; 57(7): 595-601. doi: 10.1507/endocrj.k10e-063.
29.Ikeda K, Kinoshita M, Kayama H, et al., Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells. Cell Rep. 2017; 21(7):1824-1838. doi: 10.1016/j.celrep.2017.10.082.
30. Van NT, Zhang K, Wigmore RM, et al., Dietary L-Tryptophan consumption determines the number of colonic regulatory T cells and susceptibility to colitis via GPR15. Nat Commun. 2023; 14(1): 7363. doi: 10.1038/s41467-023-43211-4.
31. Knoedler S, Knoedler L, Kauke-Navarro M, et al. Regulatory T cells in skin regeneration and wound healing. Mil Med Res. 2023;10(1):49. doi: 10.1186/s40779-023-00484-6.
32. Angelin A, Gil-de-Gómez L, Dahiya S, et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017; 25(6): 1282-1293 e7. doi: 10.1016/j.cmet.2016.12.018.
33. Chung MY and Kim BH. Fatty acids and epigenetics in health and diseases. Food Sci Biotechnol. 2024; 33(14): 3153-3166. doi: 10.1007/s10068-024-01664-3.
34. Yue Y, et al. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol. 2024; 15: 1444533. doi: 10.3389/fimmu.2024.1444533.
35. Zhou M and Wu B. Chinese Medicine in Regulating Immune Balance for the Treatment of Autoimmune Diseases. Am J Chin Med. 2025; 53(6): 1615-1640. doi: 10.1142/S0192415X25500612.
36. Tan J, Taitz J, Sun SM, et al. Your Regulatory T Cells Are What You Eat: How Diet and Gut Microbiota Affect Regulatory T Cell Development. Front Nutr. 2022; 9: 878382. doi: 10.3389/fnut.2022.878382.