BIOACTIVE COMPOUNDS FROM Psophocarpus tetragonolobus IN BLOOD GLUCOSE CONTROL in vitro AND in vivo STUDIES

Gia Vien HOANG, Thanh Bao Long PHAM, Thi Ngoc Han PHAN, Ngoc Buu TRAN, Khac Ky LAM

Main Article Content

Abstract

Psophocarpus tetragonolobus is a bioactive food source such as α -amylase inhibitor, α -glucosidase inhibitor, isoflavones, flavonoids, and antioxidants. These activities have been demonstrated in vitro and in vitro studies in animals with the ability to slow digestion and carbohydrate absorption, improve insulin sensitivity, and reduce oxidative stress - important mechanisms in controlling blood sugar. Early evidence suggests that winged bean have the potential to become a natural resource for the prevention and management of diabetes mellitus. However, large-scale clinical studies on humans are still limited, and therefore continue to be implemented in order to assert the efficiency and optimal dosage of use. This review focused on analyzing the potential and existing evidence rather than reporting the results of clinical trials on humans, to provide a scientific basis for dragon beans application in household blood control. 

With its safety and the abundance of nutrition nutrient content,ability to support the regulation of blood sugar, dragon beans have the potential to become a useful food choice in a diabetes prediabetes prevention and control strategy.

Article Details

References

1. Trần Hữu Dàng. Tiền đái tháo đường. báo cáo tổng quan sau đại học, Hội nghị nội tiết miền trung. Published online 2010.
2. Tạ Văn Bình. Dịch tễ học bệnh đái tháo đường ở Việt Nam các phương pháp điều trị và biện pháp dự phòng. Nhà xuất bản Y học, Hà Nội. Published online 2006.
3. Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310(9):948-959.
4. Mainous AG, Tanner RJ, Baker R, Zayas CE, Harle CA. Prevalence of prediabetes in England from 2003 to 2011: population-based, cross-sectional study. BMJ Open. 2014;4(6):e005002.
5. International Diabetes Federation. IDF Diabetes Atlas 10th Edition. 10th ed. International Diabetes Federation; 2021.
6. Phan DH, Vu TT, Doan VT, Le TQ, Nguyen TD, Van Hoang M. Assessment of the risk factors associated with type 2 diabetes and prediabetes mellitus: A national survey in Vietnam. Medicine. 2022;101(41):e31149.
7. Nguyễn Hải Thủy. Cập nhật chẩn đoán và điều trị tiền đái tháo đường. Tạp chí Đái tháo đờng và Nội tiết. 2021;(46):9-25.
8. Nguyễn Bình Phương, Lương Thị Hồng Lê. Tỷ lệ hiện mắc tiền đái tháo đường và các yếu tố liên quan tại tỉnh Bình Dương. Tạp chí Y học Dự phòng. 2022;32(8):36-42.
9. Nguyễn Ngọc Thiên Phú, Lê Tân Tố Anh. Nghiên cứu tình hình tiền đái tháo đường ở đối tượng nguy cơ tại Bệnh viện Trường Đại học Y Dược Cần Thơ năm 2022–2024. Tạp chí Y Dược học Cần Thơ. 2024;(77):432-438.
10. Ibuki F, Kotaru M, Kan KK, Ikeuchi T, Kanamori M. Chemical composition of winged bean (Psophocarpus tetragonolobus) varieties. J Nutr Sci Vitaminol (Tokyo). 1983;29(5):621-629.
11. Suttisansanee U, Thiyajai P, Chalermchaiwat P, et al. Phytochemicals and in vitro bioactivities of aqueous ethanolic extracts from common vegetables in Thai food. Plants. 2021;10(8):1563.
12. Nguyễn Công Khẩn, Hà Thị Anh Đào. Bảng thành phần thực phẩm Việt Nam. Nhà xuất bản Y học. Preprint posted online 2007.
13. Mohanty CS, Pradhan RC, Singh V, et al. Physicochemical analysis of Psophocarpus tetragonolobus (L.) DC seeds with fatty acids and total lipids compositions. J Food Sci Technol. 2015;52:3660-3670.
14. Bassal H, Merah O, Ali AM, Hijazi A, El Omar F. Psophocarpus tetragonolobus: An underused species with multiple potential uses. Plants. 2020;9(12):1730.
15. Bassal H, Hijazi A, Farhan H, et al. Study of the antioxidant and anti-inflammatory properties of the biological extracts of Psophocarpus tetragonolobus using two extraction methods. Molecules. 2021;26(15):4435.
16. Khalili RMA, Shafekh SE, Norhayati AH, et al. Total phenolic content and in vitro antioxidant activity of winged bean (Psophocarpus tetragonolobus). Pakistan Journal of Nutrition. 2013;12(5):416.
17. Yin Z, Zhang W, Feng F, Zhang Y, Kang W. α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness. 2014;3(3-4):136-174.
18. Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and chemical toxicology. 2020;145:111738.
19. Suttisansanee U, Thiyajai P, Chalermchaiwat P, et al. Phytochemicals and in vitro bioactivities of aqueous ethanolic extracts from common vegetables in Thai food. Plants. 2021;10(8):1563.
20. Bepary RH, Roy A, Pathak K, Deka SC. Biochemical composition, bioactivity, processing, and food applications of winged bean (Psophocarpus tetragonolobus): A review. Legume Science, 2023, 5 (3), 1–20.
21. Lee BH, Rose DR, Lin AHM, Quezada-Calvillo R, Nichols BL, Hamaker BR. Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. J Agric Food Chem. 2016;64(33):6487-6494.
22. Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am. 1997;26(3):539-551.
23. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet. 2006;368(9548):1696-1705.
24. Patil P, Mandal S, Tomar SK, Anand S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr. 2015;54(6):863-880.
25. Castellarin SD, Di Gaspero G. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 2007;7:1-10.
26. Mareshvaran UR, Murugan L, Salvamani S, Sharma M, Okechukwu PN, Gunasekaran B. In vitro inhibitory potential of Amaranthus viridis against alpha-amylase for diabetes and the antioxidant activity. Malays J Biochem Mol Biol. 2020;23(2):127-134.
27. Sok Yen F, Shu Qin C, Tan Shi Xuan S, et al. Hypoglycemic effects of plant flavonoids: a review. Evidence‐Based Complementary and Alternative Medicine. 2021;2021(1):2057333.
28. Hanhineva K, Törrönen R, Bondia-Pons I, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11(4):1365-1402.
29. Eid HM, Martineau LC, Saleem A, et al. Stimulation of AMP‐activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis‐idaea. Mol Nutr Food Res. 2010;54(7):991-1003.
30. Dhanya R, Arya AD, Nisha P, Jayamurthy P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front Pharmacol. 2017;8:336.
31. Jung JY, Lim Y, Moon MS, Kim JY, Kwon O. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutr Metab (Lond). 2011;8:1-8.
32. M Calderon-Montano J, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11(4):298-344.
33. Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Report. 2015;20(5):198-209.
34. Peng X, Zhang G, Liao Y, Gong D. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem. 2016;190:207-215.
35. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy. 2017;96:305-312.
36. Prince PSM, Kamalakkannan N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J Biochem Mol Toxicol. 2006;20(2):96-102.
37. Bazyar H, Moradi L, Zaman F, Zare Javid A. The effects of rutin flavonoid supplement on glycemic status, lipid profile, atherogenic index of plasma, brain‐derived neurotrophic factor (BDNF), some serum inflammatory, and oxidative stress factors in patients with type 2 diabetes mellitus: A double‐blind, placebo‐controlled trial. Phytotherapy Research. 2023;37(1):271-284.
38. Calvindi J, Syukur M, Nurcholis W. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas. 2020;21(6).
39. Singh M, Dubey RK, Koley TK, et al. Valorization of winged bean (Psophocarpus tetragonolobus (L) DC) by evaluation of its antioxidant activity through chemometric analysis. South African Journal of Botany. 2019;121:114-120.
40. Olaiya CO, Soetan KO, Karigidi KO. Evaluation of in vitro antioxidant capacities of six accessions of winged beans (Psophocarpus tetragonolobus). EC Nutr. 2018;13(8):589-595.
41. Timilsena YP, Phosanam A, Stockmann R. Perspectives on saponins: food functionality and applications. Int J Mol Sci. 2023;24(17):13538.
42. Decroo C, Colson E, Demeyer M, et al. Tackling saponin diversity in marine animals by mass spectrometry: Data acquisition and integration. Anal Bioanal Chem. 2017;409(12):3115-3126.
43. Mukherjee PK, Maiti K, Mukherjee K, Houghton PJ. Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol. 2006;106(1):1-28.
44. Zhang J, Zhao S, Yin P, et al. α-Glucosidase inhibitory activity of polyphenols from the burs of Castanea mollissima Blume. Molecules. 2014;19(6):8373-8386.
45. Kaur S, Mudgil D, Mudgil S, et al. Winged Bean: From Underutilized Legume to Multi-Utility Crop-Nutritional, Phytochemical, Industrial, and Functional Perspectives for Global Food Security and Sustainability. Applied Food Research. Published online 2025:101417.
46. Zinjarde SS, Bhargava SY, Kumar AR. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med. 2011;11(1):1-10.
47. Sottorff I, Aballay A, Hernández V, et al. Characterization of bioactive molecules isolated from sea cucumber Athyonidium chilensis. Rev Biol Mar Oceanogr. 2013;48(1):23-35.
48. Fu X, Wen M, Han X, et al. Effect and potential mechanism of action of sea cucumber saponins on postprandial blood glucose in mice. Biosci Biotechnol Biochem. 2016;80(6):1081-1087.
49. Van Dyck S, Gerbaux P, Flammang P. Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol. 2009;152(2):124-134.
50. El Barky AR, Ali EMM, Mohamed TM. Marine sea cucumber saponins and diabetes. Austin Pancreat Disord. 2017;1(1):1-7.
51. Elouafy Y, El Yadini A, Mortada S, et al. Antioxidant, antimicrobial, and α-glucosidase inhibitory activities of saponin extracts from walnut (Juglans regia L.) leaves. Asian Pac J Trop Biomed. 2023;13(2):60-69.
52. Perumal V, Khatib A, Ahmed QU, et al. Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chemistry: Molecular Sciences. 2021;2:100012.
53. Fabbrini M, D’Amico F, Barone M, et al. Polyphenol and tannin nutraceuticals and their metabolites: How the human gut microbiota influences their properties. Biomolecules. 2022;12(7):875.
54. Kumari M, Jain S. Tannins: An antinutrient with positive effect to manage diabetes. Research Journal of Recent Sciences ISSN. 2012;2277:2502.
55. Laaraj N, Bouhrim M, Kharchoufa L, et al. Phytochemical analysis, α-Glucosidase and α-Amylase inhibitory activities and acute toxicity studies of extracts from pomegranate (Punica granatum) bark, a valuable agro-industrial by-product. Foods. 2022;11(9):1353.
56. Srimathi B, Priyadharshini R. In Vitro Analysis of Camellia sinensis Leaf Extract Against Diabetes Mellitus. Cureus. 2024;16(6).
57. Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J Funct Foods. 2020;67:103861.
58. Zhang J, Zhao S, Yin P, et al. α-Glucosidase inhibitory activity of polyphenols from the burs of Castanea mollissima Blume. Molecules. 2014;19(6):8373-8386.
59. Tan NH, Rahim ZHA, Khor HT, Wong KC. Winged bean (Psophocarpus tetragonolobus) tannin level, phytate content and hemagglutinating activity. J Agric Food Chem. 1983;31(4):916-917.
60. Igene FU, Aletor VA. Nutrient and anti-nutrient components of raw and processed winged bean seeds (Psophocarpus tetragonolobus). Indian J Anim Sci. 2006;76(6).
61. Badawi A, Klip A, Haddad P, et al. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes Metab Syndr Obes. Published online 2010:173-186.
62. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689-709.
63. Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599-622.
64. Zhao M, Wang S, Zuo A, et al. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell Mol Biol Lett. 2021;26(1):40.
65. Darenskaya MA, Kolesnikova LI and, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull Exp Biol Med. 2021;171(2):179-189.
66. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45.
67. de Rigal D, Gauillard F, Richard‐Forget F. Changes in the carotenoid content of apricot (Prunus armeniaca, var Bergeron) during enzymatic browning: β‐carotene inhibition of chlorogenic acid degradation. J Sci Food Agric. 2000;80(6):763-768.
68. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003;81(3):321-326.
69. Olaiya CO, Soetan KO, Esan AM. The role of nutraceuticals, functional foods and value added food products in the prevention and treatment of chronic diseases. African Journal of food science. 2016;10(10):185-193.
70. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Med Res Rev. 2003;23(4):519-534.
71. Olaiya CO, Soetan KO, Karigidi KO. Cronicon Evaluation of In Vitro Antioxidant Capacities of Six Accessions of Winged Beans (Psophocarpus Tetragonolobus).; 2018.
72. Claydon A. Winged bean-a food with many uses. Plant foods for man. 1978;2(3-4):203-223.
73. Bepary RH, Roy A, Pathak K, Deka SC. Biochemical composition, bioactivity, processing, and food applications of winged bean (Psophocarpus tetragonolobus): A review. Legume Science. 2023;5(3):e187.
74. Henry CJK, Donachie PA, Rivers JPW. The winged bean. Will the wonder crop be another flop? Ecol Food Nutr. 1985;16(4):331-338.
75. Rajan DEP, Jatt RK, Nair SS, Sreena K. Screening of Psophocarpus tetragonolobus hydroalcoholic extract for antidiabetic activity on STZ-induced diabetic rat model. J Pharmacogn Phytochem. 2022;11(4):80-88.