NGHIÊN CỨU XÁC ĐỊNH CÁC HỢP CHẤT CÓ HOẠT TÍNH SINH HỌC CỦA DỊCH TRÍCH LY TRÀ VỎ CAM SÀNH (Citrus nobilis) TRONG ĐIỀU KIỆN in vitro

Đặng Chí Thiện1,, Nguyễn Hữu Thanh2
1 Trung tâm Ứng dụng tiến bộ khoa học và công nghệ
2 Trường Đại học An Giang, Đại học Quốc Gia Thành phố Hồ Chí Minh

Nội dung chính của bài viết

Tóm tắt

Mục tiêu: Xác định các hợp chất có hoạt tính sinh học trong trà được làm từ vỏ cam sành (Citrus nobilis) trồng tại Cần Thơ, Việt Nam thông qua việc đánh giá hoạt tính kháng oxy hóa, chống viêm và ức chế enzyme α-amylase của dịch trích ly trà vỏ cam sành.


Phương pháp: Trà được định tính một số hợp chất có hoạt tính sinh học và định lượng polyphenol tổng số, flavonoid tổng số. Khả năng kháng oxy hóa được xác định bằng hiệu suất bắt gốc tự do thông qua phản ứng với DPPH và ABTS cùng với năng lực khử sắt (FRAP). Khả năng chống viêm in vitro được khảo sát thông qua hoạt động ức chế sự biến tính protein. Xác định tác dụng ức chế đối với enzyme α-amylase bởi dịch trích ly trà thông qua phản ứng màu của iod-tinh bột.


Kết quả: Phân tích chỉ ra có sự hiện diện của các hợp chất có hoạt tính sinh học trong dịch trích ly trà vỏ cam sành bao gồm alkaloid, flavonoid, phenolic, saponin, terpenoid và tannin. Hàm lượng polyphenol và flavonoid tổng số lần lượt là 16,03±1,22 mg GAE/g dịch trích ly trà và 35,67±1,18 mg QE/g dịch trích ly trà. Hoạt tính kháng oxy hóa được xác định bằng phương pháp DPPH, ABTS và FRAP cho thấy giá trị IC50 lần lượt là 244,70±2,78 μg/mL, 319,66±2,88 μg/mL và 228,75±2,69 μg/mL. Hơn nữa, dịch trích ly trà cũng thể hiện hoạt tính chống viêm trong điều kiện in vitro tốt, với giá trị IC50 là 469,79±3,16 µg/mL. Ngoài ra, dịch trích ly trà cũng thể hiện khả năng ức chế enzyme α-amylase trong điều kiện in vitro với giá trị IC50  là 1105,26±1,32 μg/mL.


Kết luận: Trà vỏ cam sành chứa rất nhiều hợp chất có hoạt tính sinh học quan trọng có lợi cho sức khỏe con người, chúng vẫn tồn tại khi chế biến vỏ cam sành thành trà và dịch trích ly trà vỏ cam sành cũng thể hiện các hoạt tính sinh học. Vỏ cam sành có thể được sử dụng cho ngành công nghiệp thực phẩm nhằm nâng cao giá trị cho cam sành.

Chi tiết bài viết

Tài liệu tham khảo

1. Phạm Thị Kim Phượng, Nguyễn Bá Trung, Nguyễn Thị Ngọc Hân, Nguyễn Hữu Nghi, Lê Thị Thanh Xuân. Nghiên cứu thành phần hóa học tinh dầu vỏ quả cam sành (Citrus bobilis), Chúc (Citrus hystrix) và Chanh tây (Citrus limon). Tạp chí Công thương. 2020;8(358-365.
2. Tan Phat Dao, Thi Cam Quyen Ngo, Thi Kim Ngan Tran, et al. Nghiên cứu mô hình động học của quá trình chiết xuất và thành phần hóa học của tinh dầu vỏ Cam (Citrus sinensis). Assessing the kinetic model on exraction of essential oil and chemical composition from orange pells (Citrus sinensis). Journal of Science and Technology-NTTU. 2019;8:19-25.
3. Phạm Thị Kim Phượng. So sánh thành phần hóa học cao Ethanol, Chloroform và tinh dầu vỏ cam sành quả (Citrus Nobilis) - Comparison of high chemical composition Ethanol, Chloroform and essential oils of orange peel (Citrus Nobilis). Journal of Educational Equipment: Applied research. 2022;2:94-97.
4. Ly Thi Thuy Duyen, Khong Hoang Thang, Luu Minh Chau, et al. Extraction and evaluation of antimicrobial activities of essential oils from orange peel (Citrus nobilis) grown in Can Tho City, Vietnam. Ciência Rural, Santa Maria.2024;54:05, e20230240.
5. Lưu Minh Châu, Bùi Thị Ngọc Bích, Thái Dương Ngọc Duyên, và cs. Xác định hàm lượng phenolic, flavonoid và khả năng chống oxy hóa của quả cam sành (Citrus nobilis), TNU Journal of Science and Technology. 2023;228(13):374 - 382.
6. Mai Thành Thái, Tô Nguyễn Phước Mai, Nguyễn Văn Mười. Tính chất hóa lý và các hợp chất sinh học của quả cam sành được trồng tại Vĩnh Long. Tạp Chí Công Thương. 2022;22.
7. Pereira RMS, López BGC, Diniz SN, et al. Quantification of Flavonoids in Brazilian Orange Peels and Industrial Orange Juice Processing Wastes. Agricultural Sciences. 2017:8:631-644.
8. Fayek NM, El-Shazly AH, et al. Comparative study of the hypocholesterolemic, antidiabetic effects of four agro-waste Citrus peels cultivars and their HPLC standardization. Revista Brasileira de Farmacognosia. 27(4):488-494. doi:10.1016/j.bjp.2017.01.010.
9. Shen W, Xu Y, & Lu YH. Inhibitory effects of Citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. Journal of Agricultural and Food Chemistry. 60(38), 9609-9619. doi:10.1021/jf3032556.
10.Li, Shiming, Pan, Min-Hsiung, Lo, Chih-Yu, et al. Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods. 2009;1(1):2-12. doi:10.1016/j.jff.2008.09.003.
11.Gorinstein S, Martin-Belloso O, Park YS, et al. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2001;74:309–315. doi:10.1016/S0308-8146(01)00157-1.
12.Nguyễn Văn Mười. Nghiên cứu sản xuất sản phẩm cider và trà túi lọc từ bưởi Năm Roi và cam Sành tỉnh Vĩnh Long. Đề tài KH&CN cấp tỉnh (2021-2023), Trường Đại học Cần Thơ, 2023.
13.Emojorho EE and Akubor PI. Effect of debittering methods on the proximate composition sensory and functional properties of orange (Citrus sinensis) seed flour. Journal of Environmental Science, Toxicology and Food Technology. 2016; 10(9):134-139.
14.Roghini R and Vijayalakshmi K. Phytochemical screening, quantitative analysis of flavonoids and minerals in ethanolic extract of Citrus paradisi. Int J Pharm Sci Res. 2018; 9(11):4859-4864.
15.N. M’ Hiri, I. Ioannou, M. Ghoul. N. Mihoubi Boudhrioua. Proximate chemical composition of orange peel and variation of phenols and antioxidant activity during convective air drying. Volume JS INAT, 2015, Art 9.
16.Muhtadi H, Haryoto H, Azizah T, et al. Antidiabetic and antihypercholesterolemic activities of Citrus sinensis peel: in vivo study. National Journal of Physiology, Pharmacy and Pharmacology. 2015;5(5):382-385. doi: 10.5455/njppp.2015.5.2807201561.
17.Chowdhury SA, Sohrab MH, Datta BK, Hasan CM. Chemical and antioxidant studies of Citrus macroptera. Bangladesh J Sci Ind Res, 2008; 43(4): 449-454.
18. Nguyễn Kim Phi Phụng. Phương pháp cô lập hợp chất hữu cơ. Nhà xuất bản Đại học Quốc gia Tp. Hồ Chí Minh, 80-147 (2007).
19.Rebaya A, Belghith SI, Baghdikian B, et al. Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). Journal of Applied Pharmaceutical Science. 2014;5(1):52-57.
20.Bag GC, Devi PG, Bhaigyabati T. Assessment of total flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur Valley. International Journal of Pharmaceutical Sciences Review and Research. 2015; 30(1):154-159.
21.Ye M, Ren L, WuY, Wang Y, and Liu Y. Quality characteristics and antioxidant activity of hickory black soybean yogurt, LWT-Food Science and Technology. 2013;51(1):314-318. doi:10.1016/j.lwt.2012.09.027.
22.Nenadis N, Wang LF, Tsimidou M, et al. Estimation of scavenging activity of phenolic compounds using the ABTS. + assay. Journal of Agricultural and Food Chemistry.2014; 52(15):4669-4674. doi: 10.1021/jf0400056.
23.Benzie IF, and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry. 1996;239(1):70-76.
24.Rufino M, Alves RE, Brito ES, et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry. 2010;121(4):996-1002. doi:10.1016/j.foodchem.2010.01.037.
25. Shah M, Parveen Z, Khan MR. Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complementary and Alternative Medicine. 2017;17: 526.
26.Đái Thị Xuân Trang, Bùi Tấn Anh, Trần Thanh Mến, Phạm Thị Lan Anh, 2012. Khảo sát khả năng điều trị bệnh tiểu đường của cao chiết lá Ổi (Psidium guajava L.). Tạp chí Khoa học Trường Đại học Cần Thơ, 2012, 22b: 163-171.
27.N. Mahato, K. Sharma, M. Sinha, and M. H. Cho. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. Journal of Functional Foods. 2018;40:307-316.
28.Ani PN, & Abel HC. Nutrient, phytochemical, and antinutrient composition of Citrus maxima fruit juice and peel extract. Food Science & Nutrition. 2018;6(3):653-658. doi:10.1002/fsn3.604.
29.Moosavy MH, Hassanzadeh P, Mohammadzadeh E, et al. Antioxidant and antimicrobialactivities of essential oil of lemon (Citrus limon) peel in vitro and in a food model. Journal of Food Quality and Hazards Control. 2017;4:42-48.
30.Ben Hsouna, A., Ben Halima, N., Smaoui, S. et al. Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017; 16:146. doi:10.1186/s12944-017-0487-5.
31.Tocmo R, Pena-Fronteras J, Calumba KF, et al. Valorization of pomelo (Citrus grandis Osbeck) peel: a review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Comprehensive Reviews in Food Science and Food Safety. 2020;19(4):1969-2012. doi: 10.1111/1541-4337.12561.
32. Jiyoon Yang, Su-Yeon Lee,Soo-Kyeong Jang, Ki-Joong Kim and Mi-Jin Park. Anti-Inflammatory Effects of Essential Oils from the Peels of Citrus Cultivars. Pharmaceutics, 2023, 15(6), 1595; doi: 10.3390/pharmaceutics15061595.
33. Li Jing, Zhentian Lei, Ligai Li, Rangjin Xie, Wanpeng Xi, Yu Guan, Lloyd W Sumner, Zhiqin Zhou. Antifungal Activity of Citrus Essential Oils. Journal of Agricultural and Food Chemistry. 2014;62(14).
34.Aberoumand, A. Screening of phytochemical compounds and toxic proteinaceous protease inhibitor in some lesser-known food based plants and their effects and potential applications in food. International Journal of Food Science and Nutrition Engineering. 2012; 2(3):16-20.
35.Tapiero H, Tew KD, Ba GN, & Mathe, G. Polyphenols: do they play a role in the prevention of human pathologies? Biomedicine and Pharmacotherapy. 2002;56(4):200-207. doi:10.1016/S0753-3322(02)00178-6.
36.Lee GJ, Lee SY, Kang NG, and Jin MH. A multi-faceted comparison of phytochemicals in seven citrus peels and improvement of chemical composition and antioxidant activity by steaming. LWT - Food Science and Technology. 2022:160, 113297.
37.Huang Q, Liu J, Hu C, et al. Integrative analyses of transcriptome and carotenoids profiling revealed molecular insight into variations in fruits color of Citrus reticulata Blanco induced by transplantation. Genomics. 2022;114(2):110291.
38.Lv X, S. Zhao Z. Ning, et al. and Liu Y, Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal. 2015;9:1-14.
39. Singh B, Singh JP, Kaur A, and Singh N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International. 2020;132:109114.
40.Wang CY, Chen YW, Hou CY. Antioxidant and antibacterial activity of seven predominant terpenoids International Journal of Food Properties. 2019:22:230-238.
41.Chen XM, Tait AR, & Kitts DD. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chemistry. 2017;218:15–21. doi:10.1016/j.foodchem.2016.09.01.
42.Kamran Ghasemi, Yosef Ghasemi, Mohammad Ali Ebrahimzadeh. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci. 2009; 22(3):277-81.
43. Chang ST, Wu JH, Wang SY, et al. Antioxidant activity of extracts from Acacia confusa bark and heartwood. Journal of Agricultural and Food Chemistry. 2001;49:3420-3424.
44. Aryal S, Baniya MK, Danekhu K, et al. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 2019; 8:96. doi: 10.3390/plants8040096.
45.Lado G J. Gambetta and L Zacarias. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Horticulturae. 2018; 233:238-248.
46.Lu Y, Foo LY. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chemistry. 2001; 75(2):197-202. doi: 10.1016/S0308-8146(01)00198-4.
47.Rasheed A, and Abdul Azeez RF. A Review on Natural Antioxidants, Traditional and Complementary Medicine, Cengiz Mordeniz, IntechOpen. 2019; 82636.
48.Dixon RA, Xie DY, Sharma SB. Proanthocyanidins a final frontier in flavan. New Phytol. 2005; 165(1):9-28.
49. Sun, J., Chu, Y.-F., Wu, X., & Liu, R. H. Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry. 2002; 50(25):7449-7454. doi: 10.1021/jf0207530.
50.Azman NFIN, Azlan A, Khoo HE, & Razman MR. Antioxidant properties of fresh and frozen peels of citrus species. Current Research in Nutrition and Food Science. 2019, 7(2), 331-339. doi:10.12944/CRNFSJ.7.2.03.
51.Bhagyasri Y, Lavakumar V, Divya SMS, Ashok KCK. An overview on anti-inflammatory activity of Indian herbal plants. International Journal of Pharmaceutical Sciences and Nanotechnology. 2015;4(1):1-9.
52.Saha C, Hegde P, Friboulet A, Bayry J, Kaveri SV. Viscum album - mediated COX-2 inhibition implicates destabilization of COX-2 mRNA. PLoS One. 2015; 10(2):e0114965.
53.Roy SP, Niranjan CM, Jyothi TM, et al. Antiulcer and anti-inflammatory activity of aerial parts Enicostemma littorale Blume. Pharmacology. 2010;2(4):369-373.
54.Garg VKR, Jain M, Sharma PKR, Garg G. Anti inflammatory activity of Spinacia oleracea. International Journal of Pharma Professionals Research. 2010;1(1):1-4.
55.Lee EJ, Kim DI, Kim WJ, Moon SK. Naringin inhibits matrix metalloproteinase-9 expression and AKT phosphorylation in tumor necrosis factor-alpha-induced vascular smooth muscle cells. Molecular Nutrition and Food Research. 2009;53(12):1582-1591.
56.Andrikopoulos NK, Kaloria AC, Assimopolou NA. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation. Phytotherapy Research. 2003;7(5):501-507.
57. Quintans JSS, et al. Monoterpenes modulating cytokines- A review. Food Chem Toxicol. 2019;123:233–257.
58.Silveira e Sά R, Andrade L, Sousa D. A review on anti-inflammatory activity of monoterpenes. Molecules. 2013;18:1227–1254.
59.Othman RA, Moghadasian MH. Beyond cholesterol-lowering effects of plant sterols: Clinical and experimental evidence of anti-inflammatory properties. Nutrition Reviews. 2011;69(7):371-382.
60.Kam PC, Liew S. Traditional Chinese herbal medicine and anaesthesia. Anaesthesia 2002;57(11):1083-1089.
61.Vanu MR, Palanivelu S, Panchanatham S. Immunomodulatory and antiinflammatory effects of Semecarpus anacardium Linn. Nut milk extract in experimental inflammatory conditions. Biologica and Pharmaceutical Bulletin. 2006;29(4):693-700.
62.Sudha P, Zinjarde SS, Bhargava SY et al. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 2011; 11(1):5. doi: 10.1186/1472-6882-11-5.
63.Podsȩdek A, Majewska I, Redzynia M, et al. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. Journal of Agricultural and Food Chemistry. 2014; 62(20):4610-4617. doi: 10.1021/jf5008264.
64.Proença C, Freitas M, Ribeiro D, et al. Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure–activity relationship. Journal of Enzyme Inhibition and Medicinal Chemistry. 2019; 34(1):577-588. doi:10.1080/14756366.
65.Sahnoun M, Trabelsi S, & Bejar S. Citrus flavonoids collectively dominate the α-amylase and α-glucosidase inhibitions. Biologia. 2017;72(7):764-773.
66.Gu C, Zhang H, Putri C, Ng K. Evaluation of α-Amylase and α-Glucosidase Inhibitory Activity of Flavonoids. Int. J. Food Sci. Nutr.; 2015;2:1-6. doi:10.15436/2377-0619.15.042.
67.De Sousa E, Zanatta L, Seifriz I, et al. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(α)-dirhamnoside from Bauhinia forficata leaves. J Nat Prod. 2004;67:829-832.
68.Hanamura T, Hagiwara T, Kawagishi H. Structural and functional characterization of polyphenols isolated from Acerola (Malpighia emarginata DC.) fruit. Biosci. Biotechnol. Biochem. 2005; 69:280-286.
69.Sales PM, Souza PM, et al. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci. 2012;15(1):141-183.
70.Nizam Uddin, Md. Rakib Hasan, et al. In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pacific Journal of Tropical Biomedicine. 2014;4(6):473-479.