TỔNG QUAN VỀ MỐI QUAN HỆ GIỮA HÀNH VI DINH DƯỠNG VÀ LỐI SỐNG ĐỐI VỚI SỨC KHỎE Ở CƠ CHẾ PHÂN TỬ

Lê Ngọc Vân1, Nguyễn Hoàng Nam1, Nguyễn Thị Minh Nguyệt1,
1 Bộ môn Dinh dưỡng và Khoa học Thực phẩm, Viện Công nghệ Sinh học và Công nghệ Thực phẩm, Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

Nội dung chính của bài viết

Tóm tắt

Hiện nay, sau ba cuộc cách mạng xanh và cách mạng công nghiệp, cùng với với làn sóng phát triển công nghiệp lần thứ IV, số lượng lương thực, thực phẩm và hàng hóa phục vụ cho đời sống con người cao hơn bao giờ hết. Năng suất nuôi trồng, sản lượng hàng hóa các dây chuyền sản xuất, chế biến và điều khiển thông minh của các chuỗi cung ứng đã góp phần tạo nên tình trạng “khủng hoảng thừa” hàng tiêu dùng thực phẩm ở hầu hết các quốc gia, bao gồm Việt Nam. Khẩu phần ăn hàng ngày của đại đa số dân cư trên thế giới đạt đến ngưỡng quá thừa chất béo, đường, muối nhưng lại thiếu chất xơ. Thật khó có thể phủ nhận đây là những nguyên nhân chính gây nên các bệnh mạn tính. Chúng vừa là những viên đạn bọc đường, vừa là sát thủ thầm lặng với sức khỏe và tuổi thọ của xã hội loài người đương đại. May mắn thay, xu thế mới về chế độ ăn thực dưỡng, nhiều chất xơ và thói quen sinh hoạt, suy nghĩ tích cực, luyện tập thể dục thể thao, sống lạc quan lại là những nhân tố được phát hiện như liều thuốc tinh thần “cải lão hoàn đồng” cho con người. Bài báo mang tính tổng hợp, cập nhật một số thành tựu nghiên cứu về các khía cạnh liên quan và có tham vọng điều chỉnh theo hướng tích cực các thói quen ăn uống thiếu khoa học cũng như thay đổi suy nghĩ, hành vi tiêu cực đóng góp vào việc cải thiện sức khỏe cũng như nâng cao tuổi thọ loài người.

Chi tiết bài viết

Tài liệu tham khảo

1. Trovato GM. Behavior, nutrition and lifestyle in a comprehensive health and disease paradigm: skills and knowledge for a predictive, preventive and personalized medicine. EPMA Journal. 2012;3(1):8.
2. Hummel E, Hoffmann I. Complexity of nutritional behavior: Capturing and depicting its interrelated factors in a cause-effect model. Ecology of Food and Nutrition. 2016;55(3):241-257.
3. World Health Organization. WHO remains firmly committed to the principles set out in the preamble to the Constitution. Accessed Dec 7, 2022. https://www.who.int/about/governance/constitution
4. Nguyen TT, Hoang MV. Non-communicable diseases, food and nutrition in Vietnam from 1975 to 2015: the burden and national response. Asia Pacific journal of clinical nutrition. 2018;27(1):19-28.
5. Harris J, Nguyen PH, Tran LM, Huynh PN. Nutrition transition in Vietnam: Changing food supply, food prices, household expenditure, diet and nutrition outcomes. Food Security. 2020;12:1141-1155.
6. Embree JF. A bibliography of the physical anthropology of Indo‐China, 1938–1947. American Journal of Physical Anthropology. 1949;7(1):39-52.
7. Khan NC, Tue HH, Le BM, Le GV, Khoi HH. Secular trends in growth and nutritional status of Vietnamese adults in rural Red river delta after 30 years (1976-2006). Asia Pacific journal of clinical nutrition. 2010;19(3):412-416.
8. The World Bank. Cause of death, by non-communicable diseases (% of total) - Least developed countries: UN classification. Accessed Dec 7, 2022. https://data.worldbank.org/indicator/SH.DTH.NCOM.ZS?end=2019&locations=XL&start=2019&view=map&year=2019
9. Budreviciute A, Damiati S, Sabir DK, et al. Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Review. Frontiers in Public Health. 2020;8:788.
10. Habib SH, Saha S. Burden of non-communicable disease: Global overview. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2010;4(1):41-47.
11. Villota-Salazar NA, Mendoza-Mendoza A, González-Prieto JM. Epigenetics: from the past to the present. Frontiers in Life Science. 2016;9(4):347-370.
12. Carson C, Lawson HA. Epigenetics of metabolic syndrome. Physiological genomics. 2018;50(11):947-955.
13. Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clinical epigenetics. 2019;11(1):1-18.
14. Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RP, Willaime-Morawek S. Epigenetics in the uterine environment: how maternal diet and ART may influence the epigenome in the offspring with long-term health consequences. Genes. 2021;13(1):31.
15. Gillespie SL, Hardy LR, Anderson CM. Patterns of DNA methylation as an indicator of biological aging: State of the science and future directions in precision health promotion. Nursing outlook. 2019;67(4):337-344.
16. Fiorino E, Giudici M, Ferrari A, et al. The sirtuin class of histone deacetylases: regulation and roles in lipid metabolism. IUBMB life. 2014;66(2):89-99.
17. Townsend LK, Wright DC. Looking on the “brite” side exercise-induced browning of white adipose tissue. Pflügers Archiv - European Journal of Physiology. 2019;471(3):455-465.
18. Krämer AI, Handschin C. How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism. International Journal of Molecular Sciences. 2019;20(21):5449.
19. Dimauro I, Paronetto MP, Caporossi D. Chapter 18 - Epigenomic adaptations of exercise in the control of metabolic disease and cancer. In: Ferguson BS, ed. Nutritional Epigenomics. Academic Press; 2019:289-316.
20. Jacobsen SC, Brøns C, Bork-Jensen J, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341-3349.
21. Motta VF, Bargut TL, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Browning is activated in the subcutaneous white adipose tissue of mice metabolically challenged with a high-fructose diet submitted to high-intensity interval training. The Journal of Nutritional Biochemistry. 2019;70:164-173.
22. Min S-w, Sohn P, Cho S-h, Swanson R, Gan L. Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Review. Frontiers in Aging Neuroscience. 2013;5:53.
23. Yamaguchi S, Yoshino J. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy. BioEssays. 2017;39(5):1600227.
24. Hwang J-W, Sundar IK, Yao H, Rahman I. Chapter 15 - SIRT1 and Inflammaging in Chronic Obstructive Pulmonary Disease. In: Rahman I, Bagchi D, eds. Inflammation, Advancing Age and Nutrition. Academic Press; 2014:183-191.
25. Li J, Sha J, Sun L, Zhu D, Meng C. Contribution of Regulatory T Cell Methylation Modifications to the Pathogenesis of Allergic Airway Diseases. Journal of Immunology Research. 2021;2021:5590217.
26. Cho H, Kim C, Kim HJ, et al. Impact of smoking on neurodegeneration and cerebrovascular disease markers in cognitively normal men. European Journal of Neurology. 2016;23(1):110-119.
27. Wang T, Yan H, Lu Y, et al. Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation. European Journal of Nutrition. 2020;59(6):2709-2728.
28. Hedrick SM, Michelini RH, Doedens AL, Goldrath AW, Stone EL. FOXO transcription factors throughout T cell biology. Nature Reviews Immunology. 2012;12(9):649-661.
29. Qi J, Yu X-J, Shi X-L, et al. NF-κB Blockade in Hypothalamic Paraventricular Nucleus Inhibits High-Salt-Induced Hypertension Through NLRP3 and Caspase-1. Cardiovascular Toxicology. 2016;16(4):345-354.
30. Huang Y, Liu W, Liu J, et al. Association of Urinary Sodium Excretion and Diabetic Kidney Disease in Patients With Type 2 Diabetes Mellitus: A Cross-Sectional Study. Frontiers in Endocrinology. 2021;12:772073.
31. Marusawa H, Chiba T. Helicobacter pylori-induced activation-induced cytidine deaminase expression and carcinogenesis. Current Opinion in Immunology. 2010;22(4):442-447.
32. Wang B, Smyl C, Chen C-Y, et al. Suppression of Postprandial Blood Glucose Fluctuations by a Low-Carbohydrate, High-Protein, and High-Omega-3 Diet via Inhibition of Gluconeogenesis. International Journal of Molecular Sciences. 2018;19(7):1823.
33. Wang Y, He W. Improving the Dysregulation of FoxO1 Activity Is a Potential Therapy for Alleviating Diabetic Kidney Disease. Mini Review. Frontiers in Pharmacology. 2021;12:630617.
34. Balan Y, Packirisamy RM, P S M. High dietary salt intake activates inflammatory cascades via Th17 immune cells: impact on health and diseases. Arch Med Sci. 2022;18(2):459-465.
35. Luo Y, Yang Y, Liu M, et al. Oncogenic KRAS Reduces Expression of FGF21 in Acinar Cells to Promote Pancreatic Tumorigenesis in Mice on a High-Fat Diet. Gastroenterology. 2019;157(5):1413-1428.e11.
36. Costantino S, Mohammed SA, Ambrosini S, Paneni F. The vascular epigenome in patients with obesity and type 2 diabetes: opportunities for personalized therapies. Vascular Biology. 2020;2(1):H19-H28.
37. Opoku YK, Liu Z, Afrifa J, Khoso MH, Ren G, Li D. Therapeutic Role of Fibroblast Growth Factor 21 (FGF21) in the Amelioration of Chronic Diseases. International Journal of Peptide Research and Therapeutics. 2020;26(1):107-119.
38. Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long‑chain acyl‑CoA synthetases (Review). Oncol Lett. 2018;16(2):1390-1396.
39. Hagihara Y, Yoshimatsu Y, Mikami Y, Takada Y, Mizuno S, Kanai T. Epigenetic regulation of T helper cells and intestinal pathogenicity. Seminars in Immunopathology. 2019;41(3):379-399.
40. Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Review. Frontiers in Oncology. 2021;11:700947.
41. Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Hormone Molecular Biology and Clinical Investigation. 2017;30(1):20160016.
42. Diamond JM, Ordunio D. Guns, germs, and steel. W. W. Norton & Company, 2020.
43. Lance C. Dalleck, Len Kravitz. The History of Fitness. Accessed Jan 07, 2022. https://www.unm.edu/~lkravitz/Article%20folder/history.html
44. Lindinger MI. A century of exercise physiology: key concepts in muscle cell volume regulation. European Journal of Applied Physiology. 2022;122(3):541-559.
45. Hansen JS, Pedersen BK, Xu G, Lehmann R, Weigert C, Plomgaard P. Exercise-Induced Secretion of FGF21 and Follistatin Are Blocked by Pancreatic Clamp and Impaired in Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism. 2016;101(7):2816-2825.
46. Salminen A, Kauppinen A, Kaarniranta K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. Journal of Molecular Medicine. 2017;95(2):123-131.
47. Grijalva J, Hicks S, Zhao X, et al. Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovascular Diabetology. 2008;7(1):34.
48. Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging. 2016;8(10):2290-2307.